Untersuchung der Phononeneigenschaften von hochgradig ungeordnetem (Al_xGa_{1-x})_{0.52}In_{0.48}P mittels Ferninfrarot Spektralellipsometrie und Ramanspektroskopie

Intensity [a. u.]

aman]

250

 AM_1

[a. u.]

Intensity

250

T. Hofmann^{#,1)}, M. Schubert¹⁾, G. Leibiger²⁾, V. Gottschalch²⁾

1) Fakultät für Physik und Geowissenschaften, Festkörkerphysik, Universität Leipzig, Linnéstraße 5, D-04103 Leipzig 2) Fakultät für Chemie und Mineralogie, Halbleiterchemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig #E-mail: Tino.Hofmann@physik.uni-leipzig.de

gefördert durch DFG (Rh28/3-2) und NSF (DMI-9901510)

HL 24.29

AlGaInP-Phononen Proben Zusammenfassung □: TO, LO [Raman] O: TO, LO [FIR-SE] ■, ●, ▼, Ziel ist die Bestimmung von Komposition, Verspannung, Ordnungsgrad und Eigenschaften freier Ladunsgträger anhand der Modendispersion sowie der infrarot-dielek-0 trischen Funktion quaternärer III-V Dünnschichten Diese Arbeit: AM 262 $Al_{r}Ga_{1-r})_{0.52}In_{0.48}I$ AM 1224 nm Z=[001] ☆ Es werden die Phononenmoden im quaternären und hoch-GaP-like E gradig ungeordneten (Al_xGa_{1-x})_{0.52}In_{0.48}P für 0 ... x ... 1 mittels Raman-Spektroskopie und Ferninfrarot-Ellipsometrie (FIR-SE) 200 nm Ξ bestimmt (001) GaAs AM₂ ☆ FIR-SE-Daten gestatten die vollständige Bestimmung der TO- $Y' = [\overline{1}10]$ 32 AM, LO Frequenzen; Raman-Daten enthalten diese nur partiell, X´=[110] jedoch in prinzipieller Übereinstimmung. AM₁ 0.8 ☆ Züchtungsparameter: ☆ Neben den Hauptbändern ("InP", "GaP", "AlP") existieren drei ► (Al_xGa_{1-x})_{0.52}In_{0.48}P mittels Metallorganischerlokale Moden (AM₁ – AM₃) mit geringer Polaritat. Die (Al, Ga,), 5, In, 48 **▽** ^Δ Gasphasenepitaxie bei 720°C unverspannt auf (001) Hauptbänder entsprechen denen der binären Komponenten. Literatur: <u>م</u> X GaAs mit 6° Fehlorientierung zur nächsten (111) Ga AM1 und AM2 sind offenbar an das Vorhandensein von In Ebene gewachsen und/oder P gekoppelt. AM3 tritt nur in Proben mit Aluminium Al-Anteil x=0, 0.33, 0.48, 0.7, 0.82 und 1 auf. Die Frequenzen der lokalen Moden AM, und AM, entsprechen з * Charakterisierung: den in spontan CuPt-geordnetem GaInP₂ beobachteten TO, LO ▼, ▽: Schichtdicken: UV-VIS Ellipsometrie ordnungsinduzierten Moden (~ 312 cm⁻¹ und ~ 351 cm⁻¹). Für : Kondow (1987) 0 niedriger Ordnungsgrad: TEM und Bandlücken • . diese Frequenzen berechneten Ozoli š und Zunger das : Kubo et al. (1988) : Feng et al. (1999) : Asahi et al. (1989) -eigenschaften Auftreten einer dipsersionlosen $E_1(TO)$ Mode sowie einer Mode mit A_1 Symmetrie. Offenbar ist das Auftreten von AM₁ 0.6 0.2 0.4 0.8 Al Composition x AM₂ induziert durch bereits geringe Kationenordnung **FIR-Dielektrische Funktion** Ramanstreuspektren **FIR-SE Analysee** Analyse der dielektrischen Funktion e von (Al_xGa_{1-x})_{0.52}In_{0.48}P ☆ (Anregung mittels Argon-Ionenlaser: λ0=5145 Å bzw. 4579 Å) Modell-Dielektrische-Funktion: anhand der FIR-SE Daten im Spektralbereich $+ i \boldsymbol{g}_{\text{LO},i} \boldsymbol{w} - \boldsymbol{w}_{\text{LO},i}^2$ $\mathbf{e}_{in} \prod_{i=1}^{n} \frac{\mathbf{W} + \mathbf{b}_{\text{LU},i}}{\mathbf{W}^{2} + i \mathbf{g}_{\text{TU},i} \mathbf{W} - \mathbf{W}_{\text{TU}}^{2}}$ ☆ Infrarotaktive Gittermoden * Lorenzlinienfit zur Bestimmung der Spektrallage der Phononenmoden 100 cm⁻¹ < w < 600cm⁻¹ mit Hilfe zweier Verfahren: in den Streugeometrien TO(LO) erlaubt (verboten) [Microfocus: $\emptyset \sim 1 \mu m$] Berechnung von e mittels Modell-Dielektrischer-Funktion ☆ Lokale- und Gap-Moden LO(TO) erlaubt (verboten) [Macrofokus: $\emptyset \sim 2mm$] (MDF) durch Anpassung von Modellparametern idg w-dw (TO-LO << TO, LO) $(\mathbf{w}) = \mathbf{e}^{(L)}(\mathbf{w}) \mathbf{\Box} \Big[1 +$ ► Point-by-Point-Fit (punktweise Anpassung der FIR-SE Daten unter Variation von e) Im(ɛ)-Spektren: drei Phononenbänder (InP-, GaP-, AlP-artig) sind zur Beschreibung InP-artige TO-Moden für * $y'(x',z)\overline{y}$ $0 \le x \le 1$ (vertikale MDF-Analyse der DF ε von (Al_xGa_{1-x})_{0.52}In_{0.48}P nicht ausreichend Al, ,,In_{0.48} durchgezogene Linien) ab x = 0.48: Intensität der (durchgez.). Point-by-☆ drei zusätzliche infrarotaktive Moden mit geringer LO-TO-Aufspaltung Point-fit (gepunktet) TO- und AM-Moden werden zur Modellierung von ε verwendet (AM1 - AM3) AlP-artigen TO-Mode zu = 0.83 gering für Lorentzlinienfit gestrichelte vertikale Lin sind als lokale Maxima AM. 0.82 AM₂ von Im(ε) zu erkennen (Al, 33Ga, 67), 52In, 48 (vertikale durchgez. bzw gepunktete Linien) InP TO-Mode der GaAs-Bufferschicht bzw. des - 0 GaAs-Substrates Ga m(E) AM = 0.48 0.3 x = 0.33 Ga. In. F 200 500 400 600 AM₃ ω[cm⁻¹] 350 50 400 ω[cm⁻¹] 450 300 50 50 400 ω[cm⁻¹] AM₂ AM vertikale Linien: GaP-, Im(1/ε)-Spektren: Psi-Spektren aller z(y',y')z InP- und AlP-artige LO-MDF-Analys AM₂ Pr Moden (durchgez.), Point-by 0.0 Point-fit (gepunktet) LO- und AM-Pfeile: AM Moden vertikale Linien bezeichnen gepunktete Linien: verbotene InP-artige TOdie Parameter der LO-,TO-und lokalen Moden (AM) x=1Moden sind als lokale 40 = 0.82 Moden (Auswahlverbot!) Maxima von $Im(1/\epsilon)$ der best-Fit MDF & zu erkennen (vertikale durchgez. bzw. gepunktete Linien) x=0.82 ÷2 Im(1/£) 1.3 [deg] x = 0.48 20 Λuu_uu 16 GaasIn 20 0 300 500 0 400 ω[cm⁻¹] 300 350 400 ω[cm⁻¹] 450 350 500 400 450 ω[cm

65. Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG, Hamburg 26.03.-30.03.2001

Gedruckt im Universitätsrechenzentrum Leipzig