Kritische Punkte und Phononen in $B_xGa_{1-x}As$ und GaN_vAs_{1-v} : ein Vergleich

(HL 38.33)

G. Leibiger^{1*}, V. Gottschalch¹

V. Riede², M. Schubert²

¹Universität Leipzig, Fakultät für Chemie und Mineralogie, AK Halbleiterchemie, Linnéstr. 3, 04103 Leipzig

DPG Frühiahrstagung. Regensburg, 11.03.02 - 15.03.02

*E-mail: pge97jrk@studserv.uni-leipzig.de

Motivation

- GaN_vAs_{1-v} und B_vGa_{1-v}As als neue Materialien für 1.3/1.55 um Emitter und Tandem-Solarzellen

- Einfluss von B und N als kleinste Elemente der III. bzw. V. Hauptgruppe auf das GaAs-Wirtsgitter

→ wichtige Erkenntnisse über Einfluss der chemischen Bindung auf die elektronische Bandstruktur von Verbindungshalbleitern bzw. isovalent dotierten Halbleitern

Proben/Züchtung

MOVPE

(metallorganische Gasphasen-Epitaxie) $p_{tot} = 50 \text{ mbar}, f_{tot} = 7 \text{ l/min}$ $-GaN_vAs_{1-v}$: T = 525 °C, TBAs, DMHy, TMĞa - B.Ga, As: T = 550-600 °C, Arsin, TER TMGa / siehe auch Poster "HL 38.31"

Experimentelle Technik

- Ellipsometrie: Variable Angle of Incidence Spectroscopic Ellipsometer: Einfallswinkel $\phi = 75^{\circ}$: Messbereich 0.0124 eV < $E \leq 8 \text{ eV} (100 \text{ um} \geq \lambda \geq 155 \text{ nm})$

- Raman: Dilor XY 800 mit Dreifach-Monochromator und Nagekühltem CCD-Detektor, $\lambda_{av} = 514.5$ nm, $P_{av} = 50$ mW

Ionizität der Bindungen

- Phillips/Van Vechten-Modell: $E_{-}^{2} = E_{+}^{2} + C^{2}$ (C ist ionarer. E_b homopolarer Bindungsanteil)

 $f_{\rm i} = 0.310$

 $f_{\rm i} = 0.500$

z B in: I A Van Vechten Phys Rev 187 1007 (1969) J. C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York 1973

 $f_{\rm i} = 0.002$

Zweimoden-Phonon-Verhalten in GaN_As₁: GaAs-artiges Phonon (ω_{τ0}GaAs = 268 cm⁻¹) und GaN-artiges Phonon ($\omega_{TO}^{GaN} \cong 470-474 \text{ cm}^{-1}$) [*]

GaN-Phonon ist IR- und Raman-aktiv

Oszillatorstärke des GaN-artigen Phonons steigt linear mit der Stickstoffkonzentration [*] [*] G. Leibiger et al., J. Appl. Phys. 89, 4927 (2001)

B, Ga1, As zeigt ebenfalls Zweimoden-Phonon-Verhalten: GaAs-Phonon und BAs-Phonon mit $\omega_{to}(^{11}\text{B}) \approx 513-518 \text{ cm}^{-1} \text{ und } \omega_{to}(^{10}\text{B}) \approx 537-539 \text{ cm}^{-1}$ (Bor hat zwei natürliche Isotope: 11B mit 80%, 10B mit 20% Häufigkeit)

BAs-Phonon ist nicht mittels IR-Ellipsometrie oder IR-Transmission anzuregen

berechnete lokale Moden von B in GaAs (modifizierte lineare Kette): ω_{LO} (¹⁰B_{Ga}) = 545.8 cm⁻¹, ω_{LO} (¹¹B_{G2}) = 522.5 cm⁻¹

- Häufigkeit der Isotope spiegelt sich im Amplitudenverhältnis wieder
- die Frequenzen beider BAs-LO Phononenmoden steigen linear mit der Borkonzentration an

→ mögliche Erklärung: Summe aus "alloying" [ω_{LO} von BAs (polycr.) ≈ 714 cm⁻¹] und biaxialer, tensiler Verspannung [Rotverschiebung von Phononenmoden, Quantifizierung nicht möglich wegen fehlender Deformationspotentiale von BAs] alloving: lineare Interpolation zwischen entsprechenden Werten der binären

Endkomponenten (BAs und GaAs bzw. GaN und GaAs)

wirkung zwischen Wellenfunktionen verschiedener k-Anteile → alle (nachgewiesenen) kritischen Punkte der Bandstruktur werden durch biaxiale Verspannung und "alloying" beeinflusst \rightarrow drastische Rotverschiebung von E_a mit y → B.Ga. As verhält sich wie "normaler Mischkristall" → GaN_vAs_{1-v}, verhält sich nicht wie " normaler Mischkristall "