Free-Charge Carrier Properties of Graphene Layers on SiC

UNIVERSITY OF NEBRASKA-LINCOLN

T. Hofmann^{*1}, A. Boosalis¹, J.L. Tedesco², D.K. Gaskill², C.M. Herzinger³, J.A. Woollam³, and M. Schubert¹

Our article, "Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry," published in Appl. Phys. Lett. 98, 041906 in selected for the February 7, 2011 issue of (2011), has b irtual Journal of Nanoscale Science and Technology.

¹Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-051, USA; U.S. Naval Research Laboratory, Washington, DC 20375; ³J.A. Woollam Co. Inc., Lincoln 68508, NE, USA *thofmann@engr.unl.edu

ellipsometry.unl.edu

Our Message

- A rotating analyzer-type ellipsometer employing a frequency-tunable backward wave oscillator source was used for Mueller matrix measurements in the THz frequency range
- High mobility few layer graphene (d~1 nm) is observed as a distinct damping of Fabry-Pérot interferences originating from the SiC substrate.
- The combination of THz and MIR ellipsometry allows the identification of high and low mobility graphene layers grown on C-face SiC.
- THz optical-Hall effect data are successfully used for the determination of the free electron effective mass in epitaxial graphene.
- THz ellipsometry is found to be a very useful tool for the investigation of the electrical properties of epitaxial graphene deposited on SiC substrates.

Epitaxial Graphene for THz Electronics

Sample Description

graphene

6th Workshop Ellipsometry, February 21st 2011, TU Berlin

Results

e Mass in Grant

Determination of Effe

OHE at THz frequencies allows determination of graphene effective 0.2 mass consistent with Shubnikov-de Haas measurements on exfoliated graphene. 0.15 C-Face graphene shows a field E dependence of effective mass $m^*(B) = m_a - m_b \sqrt{B}$ this work m_a =0.18 and m_b =0.07 for δB <3.7T Quantized effective mass dependence re 438, 197 (2 for graphene: 0.0 -10¹² N [cm⁻² 0.25 0.025 0.2 117 0.020 0.1 ["m] E [meV] ຣິ 0.015 88 58 0.010 0.10 0.00 0.0 1.0 1.5 B [Tesla] B [Tesla]

Supported by the JAW Foundation, ARO W911NF-09-C-0097, NSF DMR 0922937, NSF DMR-0907475, NSF DMR-0820521, and NSF EPS-1004094

Virtual

P55