HL 12.4

Ellipsometry

Surface-heat-emittance optimisation of CIS-based flexible solar cells

Carsten Bundesmann¹, Ferdinand Dürr¹, Mathias Schubert¹, Karsten Otte²

¹ Institut für Experimentelle Physik II, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany, ² Solarion GmbH, Ostende 5, 04288 Leipzig, Germany # bundesm@physik.uni-leipzig.de http://www.uni-leipzig.de/ellipsometrie

Our Message

CuInSe₂ based flexible thin film solar cells on polyimide substrates are possible alternatives for crystalline silicon or GaAs based solar cells in space applications due to their low weight. Still their feasibility has to be proven. In order to achieve high specific power (W/kg), important optimization parameters parameters are, for instance, efficiency and surface heat emittance.

Introduction

No transmission => spectral emittance $E(\lambda)=1-R(\lambda)$

(Integrated) Emissivity

Procedure

- 1. Reflectivity at normal incidence from 0.2 to 40 µm is simulated by model calculations using model dielectric functions
- 2. Emissivity is calculated
- 3. Upon variation of parameters maximum of emissivity is determined

Model dielectric functions

Determined by infrared spectroscopic ellipsometry: SiO_x, ITO, ZnO, Buffer, CIS, Mo

Taken from reference data:

a-Al₂O₃ Chu et al., J. Appl Phys. 64, 3727 (1988) MgF₂ Hunt et al., Phys. Rev. B 134, A688 (1964)

Basic structure i		
SiO _x	d= 0 10000 nm	table
ITO or ZnO	d = 100, 300 or 500 nm, N = $1.10^{19} \dots 1.10^{21} \text{ cm}^{-3}$, μ = 5, 25, 50 cm ² /Vs	adjus param
Buffer	d= 50 nm	
CIS	d= 1500 nm	fers
Мо	d= 500 nm	ame
Polyimide	d= 30000 nm	fixed par

Emis

Optimized structure II

UNIVERSITÄT LEIPZIG

adjustable parameters d= 0 ... 2000 nm MgF₂ a-Al₂O₃ d= 0 ... 2000 nm SiO, d= 0 ... 2000 nm d = 400 nm, N = 7.10²⁰ cm⁻³. ITO $\mu = 20 \text{ cm}^2/\text{Vs}$ intrinsic ZnO d = 100 nm, N = 1.10¹⁷ cm⁻³, $\mu = 20 \text{ cm}^2/\text{Vs}$ Buffer d= 50 nm parameters CIS d= 1500 nm fixed p Mo d= 500 nm Polvimide d= 30000 nm Emissivity maximum 10 Calculated reflectivity d(a-Al₂O₃)=1000 nm 0.8 at normal incidence at d(SiOx) = 1300 nm emissivity maximum d(MgF₂)=0 nm 0.6 04 02 0.0 10 20 30 40 λ [µm] d(MaF₂)=0nm 0.75 16. 1200 800 Change of emissivity 0.74 maximum with $d(MqF_2)$ 0.73 d(SiO_x) [nm] 1600 2000 0 0.72 0.71 Emis 0.70 0.69 0.68 0.7 0.67 0 200 400 600 800 1000 0.6 0.6 d(MgF_) [nm] 0.5 0 5 0.4 04 Results 0.3 0 3 Amorphous Al₂O₃-layer increases 0.2 emissivity up to 75%. d(MgF₂)=2000nn 0.1 MgF₂-layer decreases emissivity maximum 1600 2000 400 (SiO_) [nm] · Parameters of SiO_x, ITO, ZnO-0 layers technologically feasible

68. Frühjahrstagung des Arbeitskreises Festkörperphysik der DPG, Regensburg, 8.-12.3.2004

layers, see Structure II Unterstützt vom BMBF im Rahmen des Wachstumskerns INNOCIS

Gedruckt im Rechenzentrum der Universität Leipzig